Back to Search Start Over

Hyperspectral Image Classification with the Orthogonal Self-Attention ResNet and Two-Step Support Vector Machine.

Authors :
Sun, Heting
Wang, Liguo
Liu, Haitao
Sun, Yinbang
Source :
Remote Sensing. Mar2024, Vol. 16 Issue 6, p1010. 20p.
Publication Year :
2024

Abstract

Hyperspectral image classification plays a crucial role in remote sensing image analysis by classifying pixels. However, the existing methods require more spatial–global information interaction and feature extraction capabilities. To overcome these challenges, this paper proposes a novel model for hyperspectral image classification using an orthogonal self-attention ResNet and a two-step support vector machine (OSANet-TSSVM). The OSANet-TSSVM model comprises two essential components: a deep feature extraction network and an improved support vector machine (SVM) classification module. The deep feature extraction network incorporates an orthogonal self-attention module (OSM) and a channel attention module (CAM) to enhance the spatial–spectral feature extraction. The OSM focuses on computing 2D self-attention weights for the orthogonal dimensions of an image, resulting in a reduced number of parameters while capturing comprehensive global contextual information. In contrast, the CAM independently learns attention weights along the channel dimension. The CAM autonomously learns attention weights along the channel dimension, enabling the deep network to emphasise crucial channel information and enhance the spectral feature extraction capability. In addition to the feature extraction network, the OSANet-TSSVM model leverages an improved SVM classification module known as the two-step support vector machine (TSSVM) model. This module preserves the discriminative outcomes of the first-level SVM subclassifier and remaps them as new features for the TSSVM training. By integrating the results of the two classifiers, the deficiencies of the individual classifiers were effectively compensated, resulting in significantly enhanced classification accuracy. The performance of the proposed OSANet-TSSVM model was thoroughly evaluated using public datasets. The experimental results demonstrated that the model performed well in both subjective and objective evaluation metrics. The superiority of this model highlights its potential for advancing hyperspectral image classification in remote sensing applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
6
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
176366581
Full Text :
https://doi.org/10.3390/rs16061010