Back to Search Start Over

Microwave-Assisted Grafting of Coal onto Nitrogen-Doped Carbon Dots with a High Quantum Yield and Enhanced Photoluminescence Properties.

Authors :
Shi, Chong
Wei, Xian-Yong
Source :
Molecules. Mar2024, Vol. 29 Issue 6, p1349. 13p.
Publication Year :
2024

Abstract

The fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized via a facile one-pot solvothermal process using coal (Jin 15 Anthracite and Shaerhu lignite) as raw materials and dimethyl formamide (DMF) as the solvent, employing a microwave pyrolysis method. This approach demonstrates remarkable efficacy in the development of nitrogen-doped carbon dots (N-CDs) with a high quantum yield (QY). The N-CDs prepared have strong photoluminescence properties. Moreover, the obtained N-CDs emit blue PL and are easily dispersed in polymethyl methacrylate (PMMA), preserving the inherent advantages of N-CDs and the PMMA matrix. The JN-CDs exhibit a high quantum yield (QY) of 49.5% and a production yield of 25.7%, respectively. In contrast, the SN-CDs demonstrate a quantum yield of 40% and a production yield of 35.1%. It is worth noting that the production yield and quantum yield of coal-based carbon dots are inversely related indices. The lower metamorphic degree of subbituminous coal favors an enhanced product yield, while the higher metamorphic degree of anthracite promotes an improved quantum yield in the product, which may be attributed to the presence of amorphous carbon within it. Consequently, we propose and discuss potential mechanisms underlying N-CD formation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
29
Issue :
6
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
176365324
Full Text :
https://doi.org/10.3390/molecules29061349