Back to Search Start Over

When Locally Linear Embedding Hits Boundary.

Authors :
Hau-Tieng Wu
Nan Wu
Source :
Journal of Machine Learning Research. 2023, Vol. 24, p1-80. 80p.
Publication Year :
2023

Abstract

Based on the Riemannian manifold model, we study the asymptotic behavior of a widely applied unsupervised learning algorithm, locally linear embedding (LLE), when the point cloud is sampled from a compact, smooth manifold with boundary. We show several peculiar behaviors of LLE near the boundary that are different from those diffusion-based algorithms. In particular, we show that LLE pointwisely converges to a mixed-type differential operator with degeneracy and we calculate the convergence rate. The impact of the hyperbolic part of the operator is discussed and we propose a clipped LLE algorithm which is a potential approach to recover the Dirichlet Laplace-Beltrami operator. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15324435
Volume :
24
Database :
Academic Search Index
Journal :
Journal of Machine Learning Research
Publication Type :
Academic Journal
Accession number :
176355266