Back to Search
Start Over
Low temperature sputtering deposition of Al1−xScxN thin films: Physical, chemical, and piezoelectric properties evolution by tuning the nitrogen flux in (Ar + N2) reactive atmosphere.
- Source :
-
Journal of Applied Physics . 3/28/2024, Vol. 135 Issue 12, p1-11. 11p. - Publication Year :
- 2024
-
Abstract
- This work investigates the physical properties of Al1−xScxN thin films sputtered at low temperatures by varying the process conditions. Specifically, the films were deposited at room temperature by applying a radio frequency power equal to 150 W to an AlSc alloy (60:40) target, varying the nitrogen flux percentage in the (Ar + N2) sputtering atmosphere (30%, 40%, 50%, and 60%) and keeping constant the working pressure at 5 × 10−3 mbar. The structural and chemical properties of the Al1−xScxN films were studied by x-ray diffraction and Rutherford backscattering spectrometry techniques, respectively. The piezoelectric response was investigated by piezoresponse force microscopy. In addition, the surface potential was evaluated for the first time for Sc-doped AlN thin films by Kelvin probe force microscopy, providing piezoelectric coefficients free from the no-piezoelectric additional effect to the mechanical deformation, i.e., the electrostatic force. By alloying AlN with scandium, the piezoelectric response was strongly enhanced (up to 200% compared to undoped AlN), despite the low deposition temperature and the absence of any other additional energy source supplied to the adatoms during thin film growth, which generally promotes a better structural arrangement of polycrystalline film. This is a strategic result in the field of microelectromechanical systems completely fabricated at low temperatures. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218979
- Volume :
- 135
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Journal of Applied Physics
- Publication Type :
- Academic Journal
- Accession number :
- 176342878
- Full Text :
- https://doi.org/10.1063/5.0202683