Back to Search Start Over

Area and Power Efficient AVLS-TSPC-Based Diffused Bit Generator for Key Generation.

Authors :
Premananda, B. S.
Rehman, Abdur
Megha, P.
Source :
Circuits, Systems & Signal Processing. May2024, Vol. 43 Issue 5, p3102-3117. 16p.
Publication Year :
2024

Abstract

The diffused bit generator (DBG) is an entropy generator that generates a stream of random bits. DBG is realized using a linear feedback shift register (LFSR) and cellular automata (CA). LFSR and CA are realized using flip-flops and XOR gates. The flip-flops required are designed using true single-phase clock (TSPC)-based logic to minimize the area and power of the LFSR and CA circuits. The XOR gates used in the circuits are realized either using a 12-transistor (12T) or a 6-transistor (6T). To further reduce power dissipation in the DBG circuit, low-power techniques are incorporated. In the proposed 8-bit DBGs, the adaptive voltage level at source (AVLS) is incorporated to reduce power consumption. The circuits are realized using Cadence Virtuoso in CMOS 180 nm technology, and Specter is used for simulation and power analysis. The DBG functionality is assessed for frequencies ranging up to 1 GHz with a supply voltage of 1.8 V. From the results, it was inferred that at 1 GHz the proposed-1 DBG (using a 12T XOR gate) is 94.05% power efficient; while, the proposed-2 DBG (using a 6T XOR gate) is 90.27% power efficient when compared to the reference circuits. Implementation of the proposed-1 DBG was also carried out in CMOS 45 nm technology, the functionality was verified and the power was analyzed. A similar trend of power reduction was observed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0278081X
Volume :
43
Issue :
5
Database :
Academic Search Index
Journal :
Circuits, Systems & Signal Processing
Publication Type :
Academic Journal
Accession number :
176340054
Full Text :
https://doi.org/10.1007/s00034-023-02596-9