Back to Search
Start Over
A thermally conductive Martian core and implications for its dynamo cessation.
- Source :
-
Science Advances . 3/22/2024, Vol. 10 Issue 12, p1-8. 8p. - Publication Year :
- 2024
-
Abstract
- Mars experienced a dynamo process that generated a global magnetic field ~4.3 (or earlier) to 3.6 billion years ago (Ga). The cessation of this dynamo strongly affected Mars' history and is expected to be linked to thermochemical evolution of Mars' iron-rich liquid core, which is strongly influenced by its thermal conductivity. Here, we directly measured thermal conductivities of solid iron-sulfur alloys to pressures relevant to the Martian core and temperatures to 1023 Kelvin. Our results show that a Martian core with 16 weight % sulfur has a thermal conductivity of ~19 to 32 Watt meter-1 Kelvin-1 from its top to the center, much higher than previously inferred from electrical resistivity measurements. Our modeled thermal conductivity profile throughout the Martian deep-mantle and core indicates a ~4-to 6-fold discontinuity across the core-mantle boundary. The core's efficient cooling resulting from the depth-dependent, high conductivity diminishes thermal convection and forms thermal stratification, substantially contributing to cessation of Martian dynamo. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23752548
- Volume :
- 10
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- Science Advances
- Publication Type :
- Academic Journal
- Accession number :
- 176289166
- Full Text :
- https://doi.org/10.1126/sciadv.adk1087