Back to Search Start Over

AI-aided exploration of lunar arch forms under in-plane seismic loading.

Authors :
Maqdah, Jad
Memarzadeh, Milad
Kampas, Georgios
Málaga-Chuquitaype, Christian
Source :
Acta Mechanica. Mar2024, Vol. 235 Issue 3, p1517-1533. 17p.
Publication Year :
2024

Abstract

Increasing computational power has led to the expansion of civil engineering research into using machine learning concepts for developing improved design strategies. These strategies are particularly useful for the design of extra-terrestrial habitats under uncertain environmental conditions. This paper focuses on building an unsupervised machine learning model (convolutional autoencoder) capable of detecting patterns in arch shapes and differentiating between their stress and displacement contours. Foremost, detailed discussions of the model's architecture and input data are presented. The variation of arch shapes and contours between cluster centroids in the latent space is determined, proving the capability of optimisation by moving towards clusters with optimal contours. Finally, a regression model is built to investigate the relationship between the input geometric variables and the latent space representation. We prove that the autoencoder and regression models produce arch shapes with logical structural contours given a set of input geometric variables. The results presented in this paper provide essential tools for the development of an automated design strategy capable of finding optimal arch shapes for extra-terrestrial habitats. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00015970
Volume :
235
Issue :
3
Database :
Academic Search Index
Journal :
Acta Mechanica
Publication Type :
Academic Journal
Accession number :
176222523
Full Text :
https://doi.org/10.1007/s00707-023-03520-7