Back to Search Start Over

Enhancement of Bifunctional Catalytic Performance of G‐C3N4@ Ag Composite by NaBH4 Etching.

Authors :
Tang, Yue‐Feng
Zhao, Meng‐Yun
Han, Guo‐Zhi
Source :
Particle & Particle Systems Characterization. Mar2024, Vol. 41 Issue 3, p1-9. 9p.
Publication Year :
2024

Abstract

Herein, a novel composite of g‐C3N4 and silver nanoparticles(g‐C3N4@Ag) with enhanced bifunctional catalytic activity through chemical etching is reported. A kind of g‐C3N4@Ag composite by one‐pot route, then treated the product with sodium borohydride (NaBH4) solution for a certain time is first synthesized. The property and morphology of the g‐C3N4@Ag composite changed greatly after the treatment. Compared with the pristine g‐C3N4@Ag composite, the NaBH4‐etching endowed g‐C3N4@Ag composite (RACN) with smoother two‐dimensional plane structure, as well as an extension of the conjugate system which originating from the stronger chemical connection between the Ag nanoparticles and g‐C3N4. Furthermore, research results indicated that the RACN showed superior broad‐spectrum catalytic performance for the reduction of aromatic nitro compounds, and the catalytic efficiency of the RACN is enhanced dozens of times by the treatment. Moreover, the photocatalytic activity of the RACN is also greatly improved. This discovery provides an efficient and facile method toward the enhancement of catalytic activity of semiconductor and metal nanoparticle composites by chemical etching. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09340866
Volume :
41
Issue :
3
Database :
Academic Search Index
Journal :
Particle & Particle Systems Characterization
Publication Type :
Academic Journal
Accession number :
176213958
Full Text :
https://doi.org/10.1002/ppsc.202300109