Back to Search Start Over

岩藻黄质活化核因子 E2 相关因子 2 改善糖皮质激素诱导的成骨细胞凋亡.

Authors :
谢 婷
刘婷婷
曾雪慧
李亚敏
周庞虎
易念华
Source :
Chinese Journal of Tissue Engineering Research / Zhongguo Zuzhi Gongcheng Yanjiu. 8/18/2024, Vol. 28 Issue 23, p3609-3614. 6p.
Publication Year :
2024

Abstract

BACKGROUND: Osteoporosis has a high incidence, leading to fracture and other complications. However, existing drugs have great side effects and are difficult to meet the clinical application. OBJECTIVE: To explore the effect and potential mechanism of fucoxanthin on osteoporosis induced by glucocorticoid. METHODS: Primary rat osteoblasts were inoculated in 6-well plates. When the cell fusion reached 80%, the cells were divided into four groups: the control group was cultured alone for 24 hours, the glucocorticoid group was intervened with dexamethasone for 24 hours, the fucoxanthin group was intervened with fucoxanthin for 24 hours, and the glucocorticoid + fucoxanthin group was intervened with dexamethasone and fucoxanthin at the same time for 24 hours. After intervention, cell proliferation, apoptosis, intracellular reactive oxygen species level, and protein expression of apoptosis-related proteins, bone formationrelated proteins, and nuclear factor erythroid-2-related factor 2 were detected. RESULTS AND CONCLUSION: Cell counting kit-8 results showed that the cell viability was decreased in the glucocorticoid group compared with the control group (P < 0.05) but increased in the glucocorticoid+fucoxanthin group compared with the glucocorticoid group (P < 0.05). JC-1 mitochondrial membrane potential staining and flow cytometry assay showed that the percentage of apoptosis increased in the glucocorticoid group compared with the control group (P < 0.05) but decreased in the glucocorticoid+fucoxanthin group compared with the glucocorticoid group (P < 0.05). Western blot assay showed that compared with the control group, the protein expression of BAX and cleaved poly (ADP-ribose) polymerase was elevated in the glucocorticoid group (P < 0.05), and the protein expression of BCL2, type I collagen α1 peptide chain, alkaline phosphatase, osteocalcin, and RUNX2 was decreased in the glucocorticoid group (P < 0.05). Compared with the glucocorticoid group, the protein expression of BAX and cleaved poly (ADP-ribose) polymerase was decreased (P < 0.05), and the protein expression of BCL2, type I collagen α1 peptide chain, alkaline phosphatase, osteocalcin, and RUNX2 was elevated (P < 0.05) in the glucocorticoid+fucoxanthin group. Fluorescent probe assay showed an increase in reactive oxygen species level in the glucocorticoid group compared with the control group (P < 0.05) and a decrease in reactive oxygen species level in the glucocorticoid+fucoxanthin group compared with the glucocorticoid group (P < 0.05). Immunofluorescence staining and western blot assay showed that the protein expression of nuclear factor erythroid-2-related factor 2 in the glucocorticoid group was decreased compared with that in the control group (P < 0.05); and the protein expression of nuclear factor erythroid-2-related factor 2 in the glucocorticoid+fucoxanthin group was elevated compared with that in the glucocorticoid group (P < 0.05). To conclude, fucoxanthin can improve glucocorticoid-induced osteoblast apoptosis and the expression of bone formation-related molecules by activating nuclear factor erythroid-2-related factor 2. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
20954344
Volume :
28
Issue :
23
Database :
Academic Search Index
Journal :
Chinese Journal of Tissue Engineering Research / Zhongguo Zuzhi Gongcheng Yanjiu
Publication Type :
Academic Journal
Accession number :
176202157
Full Text :
https://doi.org/10.12307/2024.416