Back to Search Start Over

Bionic structure and biocompatibilities of long chain branched poly(L-lactic acid) oriented microcellular foaming material.

Authors :
Chen, Yueling
Yang, Wenchao
Hu, Zikang
Gao, Xiaoyan
Ye, Jingbiao
Song, Xiangqian
Chen, Baoshu
Li, Zhengqiu
Source :
International Journal of Biological Macromolecules. Apr2024:Part 2, Vol. 263, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

In order to solve the problem of uneven microporous structure of Poly(L-lactic acid) (PLLA) bulk orientation by using biological safety multi-functional plant oil as chain extenders (CE), multi-armed flexible chains were introduced into PLLA through reactive processing to prepare long chain branched PLLA (LCB-PLLA). When the total content of the CE was 6.15 wt%, PLLA and the CE reacted most fully, while maintaining the tensile strength of PLLA and improving toughness. After introducing the LCB structure, the presence of multi-armed flexible chains increased the mobility of the molecular chains, resulting in a significantly lower degree of crystallinity. When the draw ratio up to 900 %, the crystallinity of LCB-PLLA-F-900 % was only 45.15 %, lower than that of PLLA-F-900 %. Thanks to the mobility of polymer chains can be enhanced, which reduces the degree of crystallinity while promoting the uniform growth of oriented microporous structures. Finally, an oriented micro-porous biomimetic LCB-PLLA material with an average cell diameter of 540 nm was prepared, and the results of in vitro cell culture showed that the oriented micro-porous LCB-PLLA biomimetic material was more conducive to cell proliferation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01418130
Volume :
263
Database :
Academic Search Index
Journal :
International Journal of Biological Macromolecules
Publication Type :
Academic Journal
Accession number :
176195564
Full Text :
https://doi.org/10.1016/j.ijbiomac.2024.130467