Back to Search Start Over

Asymmetric Sandwich Janus Structure for High‐Performance Textile‐Based Thermo–Hydroelectric Generators Toward Human Health Monitoring.

Authors :
Xue, Yang‐Biao
Cao, Yuan‐Ming
Luo, Peng
Dong, Xin‐Xin
Han, Bin‐Bin
Zhao, Yu‐Dong
Zheng, Mi
Zheng, Min
Wang, Zuo‐Shan
Zhuo, Ming‐Peng
Source :
Advanced Functional Materials. 3/18/2024, Vol. 34 Issue 12, p1-11. 11p.
Publication Year :
2024

Abstract

Textile‐based generators that can convert low‐grade energy from the human body or environment into sustainable electricity have generated immense scientific interest in self‐powered wearable applications. However, their low power density and environmental suitability have extremely restricted their portable applications in complex and mutable environments. Herein, an asymmetric sandwich structure between molybdenum disulfide (MoS2)‐carbonized silks (MCs) and MoS2/MXene–Cottons (MMCs) to construct efficient thermo–hydroelectric generators (THEGs) that synergistically harvest heat‐moisture energy to generate considerable electricity is rationally designed. Notably, the large surface area of MoS2/MXene van der Waals heterojunctions (vdWhs) enables efficient charge collection, and the vertical MoS2 nanosheet arrays supply abundant nanochannels for a highly efficient hydration effect, generating an output power density of 32.26 µW cm−2 after wetting with deionized water. Combined with the sensitive temperature recognition ability with a Seebeck coefficient of 23.5 µV K−1, the application possibilities of these prepared THEGs in the mutual conversion of fingertip temperature/language, and the monitoring of the human physiological state is foresee. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
12
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
176146334
Full Text :
https://doi.org/10.1002/adfm.202310485