Back to Search
Start Over
Cosmic evolution early release science survey (CEERS): multiclassing galactic dwarf stars in the deep JWST/NIRCam.
- Source :
-
Monthly Notices of the Royal Astronomical Society . Apr2024, Vol. 529 Issue 2, p1067-1081. 15p. - Publication Year :
- 2024
-
Abstract
- Low-mass (sub)stellar objects represent the low end of the initial mass function, the transition to free-floating planets and a prominent interloper population in the search for high-redshift galaxies. To what accuracy can photometry only classify these? JWST/NIRCam has several advantages over Hubble Space Telescope (HST)/WFC3 near-infrared (NIR): more filters, a greater wavelength range, and greater spatial resolution. Here, we present a catalogue of (sub)stellar dwarfs identified in the cosmic evolution early release science survey (CEERS). We identify 518 stellar objects down to mF200W 28 using half-light radius, a full three magnitudes deeper than typical HST/WFC3 images. A k-means nearest neighbour (kNN) algorithm identifies and types these sources, using four HST/WFC3 and four NIRCam filters, trained on IRTF / spex spectra of nearby brown dwarfs. The kNN with four neighbours classifies well within two subtypes: e.g. M2±2, achieving ∼95 per cent precision and recall. In CEERS, we find 9 M8±2, 2 L6±2, 1 T4±2, and 15 T8±2. We compare the observed long wavelength NIRCam colours – not used in the kNN – to those expected for brown dwarf atmospheric models. The NIRCam F356W−F444W and F410M−F444W colours are redder by a magnitude for the type assigned by the kNN, hinting at a wider variety of atmospheres for these objects. We find a 300–350 pc scale height for M6±2 dwarfs plus a second structural component and a 150–200 pc scale height for T6±2 type dwarfs, consistent with literature values. A single M8±2 dwarf is spectroscopically confirmed at 4 kpc distance. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00358711
- Volume :
- 529
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Monthly Notices of the Royal Astronomical Society
- Publication Type :
- Academic Journal
- Accession number :
- 176103724
- Full Text :
- https://doi.org/10.1093/mnras/stae316