Back to Search Start Over

Multi-objective optimization parameter of diesel dual fuel using compressed natural gas at low load.

Authors :
Effendi, Mohammad Khoirul
Pertiwi, Fungky Dyan
Sudarmanta, Bambang
Pamuji, Feby Agung
Sampurno
Yuvenda, Dori
Source :
AIP Conference Proceedings. 2024, Vol. 3026 Issue 1, p1-10. 10p.
Publication Year :
2024

Abstract

The power density and fuel efficiency of a diesel engine can greatly be improved using a compressed natural gas-diesel dual fuel (CNG-DDF). At low loads, however, the effect of DDF causes a number of issues, including decreased engine performance and an increase in pollutant output (i.e., CO and NOx) during operation. As a result, a combined approach using backpropagation neural networks (BPNN), genetic algorithms (GA), and particle swarm optimization has been developed to predict and optimize the maximum CNG-DDF engine parameter outputs (cylinder pressure, maximum thermal efficiency, and minimum carbon monoxide) (PSO). To begin with, the DDF engine parameter input was carried out in order to generate experimental data by varying the values of the pilot injection time (Tpi), CNG injection timing (TiCNG), supercharger voltage (Vsp), and injection timing (Ti). Next, a three-replication orthogonal array L25 was used to generate seventy-five experimental data points. Then, using training, testing, and validation, BPNN created a fitness function using the experimental data. The best DDF engine performance was then determined by GA and PSO using the fitness function developed by BPNN. The optimization findings indicated that PSO outperformed GA, with the best cost of PSO being 25% more expensive than the GA outcome. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
3026
Issue :
1
Database :
Academic Search Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
176096906
Full Text :
https://doi.org/10.1063/5.0199745