Back to Search
Start Over
Integrated preservation of water activity as key to intensified chemoenzymatic synthesis of bio-based styrene derivatives.
- Source :
-
Communications Chemistry . 3/14/2024, Vol. 7 Issue 1, p1-11. 11p. - Publication Year :
- 2024
-
Abstract
- The valorization of lignin-derived feedstocks by catalytic means enables their defunctionalization and upgrading to valuable products. However, the development of productive, safe, and low-waste processes remains challenging. This paper explores the industrial potential of a chemoenzymatic reaction performing the decarboxylation of bio-based phenolic acids in wet cyclopentyl methyl ether (CPME) by immobilized phenolic acid decarboxylase from Bacillus subtilis, followed by a base-catalyzed acylation. Key-to-success is the continuous control of water activity, which fluctuates along the reaction progress, particularly at high substrate loadings (triggered by different hydrophilicities of substrate and product). A combination of experimentation, thermodynamic equilibrium calculations, and MD simulations revealed the change in water activity which guided the integration of water reservoirs and allowed process intensification of the previously limiting enzymatic step. With this, the highly concentrated sequential two-step cascade (400 g·L–1) achieves full conversions and affords products in less than 3 h. The chemical step is versatile, accepting different acyl donors, leading to a range of industrially sound products. Importantly, the finding that water activity changes in intensified processes is an academic insight that might explain other deactivations of enzymes when used in non-conventional media. Lignin-derived phenolic acids can be upgraded to styrene derivatives through chemoenzymatic processes, however, the scale-up of such processes remains challenging. Here, the authors find that controlling the water activity during the decarboxylation of bio-based phenolic acids, including through the integration of a water reservoir, enables high conversions and efficient reaction times, that can be combined with a versatile acyl donor substrate scope. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 23993669
- Volume :
- 7
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Communications Chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 176082848
- Full Text :
- https://doi.org/10.1038/s42004-024-01138-x