Back to Search Start Over

Systematic Radio Telescope Alignment Using Portable Fringe Projection Profilometry.

Authors :
Berkson, Joel
Hyatt, Justin
Julicher, Nathan
Jeong, Byeongjoon
Pimienta, Isaac
Ball, Rachel
Ellis, Wyatt
Voris, Jason
Torres-Barajas, Diego
Kim, Daewook
Source :
Nanomanufacturing & Metrology. 3/15/2024, Vol. 7 Issue 1, p1-11. 11p.
Publication Year :
2024

Abstract

In 2019, the Event Horizon Telescope (EHT) released the first-ever image of a black hole event horizon. Astronomers are now aiming for higher angular resolutions of distant targets, like black holes, to understand more about the fundamental laws of gravity that govern our universe. To achieve this higher resolution and increased sensitivity, larger radio telescopes are needed to operate at higher frequencies and in larger quantities. Projects like the next-generation Very Large Array (ngVLA) and the Square-Kilometer Array (SKA) require building hundreds of telescopes with diameters greater than 10 ms over the next decade. This has a twofold effect. Radio telescope surfaces need to be more accurate to operate at higher frequencies, and the logistics involved in maintaining a radio telescope need to be simplified to support them properly in large quantities. Both of these problems can be solved with improved methods for surface metrology that are faster and more accurate with a higher resolution. This leads to faster and more accurate panel alignment and, therefore, a more productive observatory. In this paper, we present the use of binocular fringe projection profilometry as a solution to this problem and demonstrate it by aligning two panels on a 3-m radio telescope dish. The measurement takes only 10 min and directly delivers feedback on the tip, tilt, and piston of each panel to create the ideal reflector shape. Highlights: Current methods for measuring and aligning radio telescope dishes are insufficient for future astronomy requirements. We've developed a 3D scanning method for measuring full aperture dishes outdoors that is faster, easier, and more reliable than current methods. We demonstrated the method by aligning two panels on a 3-m dish to a high accuracy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2520811X
Volume :
7
Issue :
1
Database :
Academic Search Index
Journal :
Nanomanufacturing & Metrology
Publication Type :
Academic Journal
Accession number :
176082806
Full Text :
https://doi.org/10.1007/s41871-024-00225-w