Back to Search Start Over

Efficient heavy metal ion removal by fluorographene nanochannel templated molecular sieve: a molecular dynamics simulation study.

Authors :
Ou, Youguan
Gu, Zonglin
Luo, Yuqi
Source :
Scientific Reports. 3/15/2024, Vol. 14 Issue 1, p1-9. 9p.
Publication Year :
2024

Abstract

Environmental water contamination, particularly by heavy metal ions, has emerged as a worldwide concern due to their non-biodegradable nature and propensity to accumulate in soil and living organisms, posing a significant risk to human health. Therefore, the effective removal of heavy metal ions from wastewater is of utmost importance for both public health and environmental sustainability. In this study, we propose and design a membrane consisting of fluorographene (F-GRA) nanochannels to investigate its heavy metal ion removal capacity through molecular dynamics simulation. Although many previous studies have revealed the good performance of lamellar graphene membranes for desalination, how the zero-charged graphene functionalized by fluorine atoms (fully covered by negative charges) affects the heavy metal ion removal capacity is still unknown. Our F-GRA membrane exhibits an exceptional water permeability accompanied by an ideal heavy metal ion rejection rate. The superior performance of F-GRA membrane in removing heavy metal ions can be attributed to the negative charge of the F-GRA surface, which results in electrostatic attraction to positively charged ions that facilitates the optimal ion capture. Our analysis of the potential of mean force further reveals that water molecule exhibits the lowest free energy barrier relative to ions when passing through the F-GRA channel, indicating that water transport is energetically more favorable than ion. Additional simulations of lamellar graphene membranes show that graphene membranes have higher water permeabilities compared with F-GRA membranes, while robustly compromising the heavy meal ion rejection rates, and thus F-GRA membranes show better performances. Overall, our theoretical research offers a potential design approach of F-GRA membrane for heavy metal ions removal in future industrial wastewater treatment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
176081756
Full Text :
https://doi.org/10.1038/s41598-024-56908-3