Back to Search Start Over

Convolutional transformer attention network with few-shot learning for grassland degradation monitoring using UAV hyperspectral imagery.

Authors :
Zhang, Tao
Bi, Yuge
Xuan, Chuanzhong
Source :
International Journal of Remote Sensing. Mar2024, Vol. 45 Issue 6, p2109-2135. 27p.
Publication Year :
2024

Abstract

In recent years, the desertification of grasslands has increased due to various factors, including both global warming and human activities. It is an essential basis for grassland degradation monitoring to monitor the dynamic change of desert grassland vegetation communities and distribution statistics. Although unmanned aerial vehicle (UAV) remote sensing images have allowed us to achieve dynamic real-time grassland monitoring, the distribution of desert grassland ground objects can be random and narrow, thus increasing the difficulty of sample labelling of remote sensing imagery. Therefore, to reduce the number of samples required for the model, this research proposes a convolutional transformer attention network (CTAN) to identify desert grassland ground objects and validate it on a self-collected desert grassland dataset. The network utilizes the transformer model to enhance its learning of global pixels so that it suppresses the transmission of background pixels within the network. Furthermore, the edge convolution module is designed to strengthen the network's learning for edge pixels, improving its identification effect. The results show that the network provides 97.22% of overall accuracy (OA), 94.35% of average accuracy (AA), and 0.9398 of Kappa for ground object recognition in desert grassland. The model improves OA by 2.36–9.85% points compared to methods in the same field and 0.8–6.35% points compared to methods in hyperspectral imagery classification. The experimental results show the superior performance of the CTAN model for recognizing desert grassland objects, which helps the management and restoration of desert grasslands. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01431161
Volume :
45
Issue :
6
Database :
Academic Search Index
Journal :
International Journal of Remote Sensing
Publication Type :
Academic Journal
Accession number :
176072502
Full Text :
https://doi.org/10.1080/01431161.2024.2326042