Back to Search Start Over

Engineering atomic size mismatch in Pr3+, La3+ codoped Lu3Al5O12 garnet single crystals for tailored structure and functional properties.

Authors :
Bartosiewicz, Karol
Albini, Benedetta
Szymański, Damian
Socha, Paweł
Horiai, Takahiko
Yoshino, Masao
Yamaji, Akihiro
Kurosawa, Shunsuke
Kucerkova, Romana
Galinetto, Pietro
Yoshikawa, Akira
Source :
Journal of Alloys & Compounds. May2024, Vol. 985, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

This study provided the first in-depth investigation of the effects of large dopant incompatibility (Pr3+ and La3+ ions) on the small host lattice element (Lu3+) in Lu 3 Al 5 O 12 (LuAG) single crystal. The growth of such complex crystals from the melt presented many challenges. By engineering the ionic radius ratio of RE- and M-site cations, a single-crystal phase stabilized by configurational entropy was achieved. This investigation elucidated the crystallization behavior of configurationally disordered rare-earth aluminum garnet oxide (Lu 1−x−y Pr x La y) 3 Al 5 O 12 from the melt and characterized its functional properties, including microstructural, optical, photoluminescence, and scintillation properties, between 5 and 300 K. Relaxation of the imposed strain energy led to local perturbations and destabilization of the garnet structure. Multielemental EDS mapping, micro-Raman spectroscopy, and thermoluminescence revealed the mechanism by which atomic size mismatch drove a smooth transition from the garnet to the perovskite phase in high entropy garnets. The optical, photoluminescence, and scintillation measurements provided fundamental insights into property changes driven by incompatibility doping. Standard and modified Judd-Ofelt theory analysis of absorption spectra determined the phenomenological Judd-Ofelt parameters Ω λ and radiative lifetimes. Atomic size mismatch engineering offers a promising approach to overcoming the limitations of conventional eutectic synthesis methods. • Perovskite inclusions, driven by atomic size mismatch, extend from rim to core. • Controlled incompatible La3+,Pr3+ codoping in LuAG modify functional properties. • Scintillation light yield improved up to 30% in La3+ codoped LuAG:Pr crystals. • (La,Pr)AlO 3 perovskite forms due to size mismatch of La3+ and Pr3+ with Lu3+. • Lattice disorder affects the intensity ratio of Pr³⁺ 5d→4 f and 4 f→4 f emissions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09258388
Volume :
985
Database :
Academic Search Index
Journal :
Journal of Alloys & Compounds
Publication Type :
Academic Journal
Accession number :
176070566
Full Text :
https://doi.org/10.1016/j.jallcom.2024.174078