Back to Search
Start Over
Curvature estimates for spacelike graphic hypersurfaces in Lorentz–Minkowski space R1n+1$\mathbb {R}^{n+1}_{1}$.
- Source :
-
Mathematische Nachrichten . Mar2024, Vol. 297 Issue 3, p833-860. 28p. - Publication Year :
- 2024
-
Abstract
- In this paper, we can obtain curvature estimates for spacelike admissible graphic hypersurfaces in the (n+1)$(n+1)$‐dimensional Lorentz–Minkowski space R1n+1$\mathbb {R}^{n+1}_{1}$, and through which the existence of spacelike admissible graphic hypersurfaces, with prescribed 2‐nd Weingarten curvature and Dirichlet boundary data, defined over a strictly convex domain in the hyperbolic plane Hn(1)⊂R1n+1$\mathcal {H}^{n}(1)\subset \mathbb {R}^{n+1}_{1}$ of center at origin and radius 1, can be proven. [ABSTRACT FROM AUTHOR]
- Subjects :
- *CURVATURE
*HYPERSURFACES
*CONVEX domains
Subjects
Details
- Language :
- English
- ISSN :
- 0025584X
- Volume :
- 297
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Mathematische Nachrichten
- Publication Type :
- Academic Journal
- Accession number :
- 176012024
- Full Text :
- https://doi.org/10.1002/mana.202200107