Back to Search Start Over

Curvature estimates for spacelike graphic hypersurfaces in Lorentz–Minkowski space R1n+1$\mathbb {R}^{n+1}_{1}$.

Authors :
Gao, Ya
Li, Jie
Mao, Jing
Xie, Zhiqi
Source :
Mathematische Nachrichten. Mar2024, Vol. 297 Issue 3, p833-860. 28p.
Publication Year :
2024

Abstract

In this paper, we can obtain curvature estimates for spacelike admissible graphic hypersurfaces in the (n+1)$(n+1)$‐dimensional Lorentz–Minkowski space R1n+1$\mathbb {R}^{n+1}_{1}$, and through which the existence of spacelike admissible graphic hypersurfaces, with prescribed 2‐nd Weingarten curvature and Dirichlet boundary data, defined over a strictly convex domain in the hyperbolic plane Hn(1)⊂R1n+1$\mathcal {H}^{n}(1)\subset \mathbb {R}^{n+1}_{1}$ of center at origin and radius 1, can be proven. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0025584X
Volume :
297
Issue :
3
Database :
Academic Search Index
Journal :
Mathematische Nachrichten
Publication Type :
Academic Journal
Accession number :
176012024
Full Text :
https://doi.org/10.1002/mana.202200107