Back to Search
Start Over
Identification of Key Ubiquitination Sites Involved in the Proteasomal Degradation of AtACS7 in Arabidopsis.
- Source :
-
International Journal of Molecular Sciences . Mar2024, Vol. 25 Issue 5, p2931. 7p. - Publication Year :
- 2024
-
Abstract
- The gaseous hormone ethylene plays pivotal roles in plant growth and development. The rate-limiting enzyme of ethylene biosynthesis in seed plants is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). ACS proteins are encoded by a multigene family and the expression of ACS genes is highly regulated, especially at a post-translational level. AtACS7, the only type III ACS in Arabidopsis, is degraded in a 26S proteasome-dependent pathway. Here, by using liquid chromatography–mass spectrometry/mass spectrometry (LC-MS/MS) analysis, two lysine residues of AtACS7, lys285 (K285) and lys366 (K366), were revealed to be ubiquitin-modified in young, light-grown Arabidopsis seedlings but not in etiolated seedlings. Deubiquitylation-mimicking mutations of these residues significantly increased the stability of the AtACS7K285RK366R mutant protein in cell-free degradation assays. All results suggest that K285 and K366 are the major ubiquitination sites on AtACS7, providing deeper insights into the post-translational regulation of AtACS7 in Arabidopsis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16616596
- Volume :
- 25
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 175995074
- Full Text :
- https://doi.org/10.3390/ijms25052931