Back to Search Start Over

Performance of single-cell ICP-MS for quantitative biodistribution studies of silver interactions with bacteria.

Authors :
Gimenez-Ingalaturre, Ana C.
Abad-Álvaro, Isabel
Goñi, Pilar
Billimoria, Kharmen
Goenaga-Infante, Heidi
Laborda, Francisco
Source :
JAAS (Journal of Analytical Atomic Spectrometry). Mar2024, Vol. 39 Issue 3, p743-753. 11p.
Publication Year :
2024

Abstract

Single-cell analysis using inductively coupled plasma mass spectrometry (SC-ICP-MS) is an analytical methodology that allows to obtain qualitative and quantitative information of the element content of bioparticles (cells, bacteria, unicellular algae, yeasts...) on a cell-by-cell basis. In this study, two commercially available nebulisation systems for introduction of intact bioparticles were evaluated, showing similar performance. Bacteria (E. coli) exposed to Ag(I) and 10 nm Ag nanoparticles were detected and their complete silver content distributions successfully recorded. Analysis of the corresponding spheroplasts, obtained after enzymatic digestion of the bacterial outer membrane with lysozyme, allowed information about the intracellular silver to be obtained, providing an insight into the biodistribution of silver in the bacteria. Likewise, validity of the quantitative information obtained by SC-ICP-MS was evaluated by applying methodology based on the estimation of silver mass per bioparticle critical values and successive dilutions. The quantitative information obtained by SC-ICP-MS for the total content of silver in bacteria and spheroplasts was confirmed by acid digestion followed by conventional ICP-MS analysis. Bacteria exposed to silver nanoparticles accumulated lower amounts of silver than those exposed to ionic silver, the latter being totally internalized, showing the higher bioavailability of ionic silver. This study proves for the first time the suitability of SC-ICP-MS for the quantitative determination of silver in bacteria, as well as in spheroplasts when combined with lysozyme digestion. Limits of detection of 7 ag of Ag per bioparticle, 500 bioparticles per mL and 38 ng of total Ag per litre of bacteria/spheroplast suspension were achieved. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02679477
Volume :
39
Issue :
3
Database :
Academic Search Index
Journal :
JAAS (Journal of Analytical Atomic Spectrometry)
Publication Type :
Academic Journal
Accession number :
175992973
Full Text :
https://doi.org/10.1039/d3ja00378g