Back to Search Start Over

Origin of Multiferroism in VOX 2 (X = Cl, Br, I) Monolayers.

Authors :
Apostolov, Angel Todorov
Apostolova, Iliana Naumova
Wesselinowa, Julia Mihailova
Source :
Nanomaterials (2079-4991). Mar2024, Vol. 14 Issue 5, p408. 21p.
Publication Year :
2024

Abstract

Based on the proposed microscopic model, we investigate the multiferroic characteristics of VOX2 (X = Cl, Br, I) monolayers using a Green's function method. The dependence of the microscopic parameters of the ferroelectric system (pseudo-spin arrangement and flipping rate) on the magnitude and sign of the exchange magnetic interaction along the b-axis and the value of the Dzyaloshinskii–Moria vector have been investigated and qualitatively explained. The possibility of observing a spin-reorientation transition with a change in the character of spin ordering from antiferromagnetic to ferromagnetic is investigated. It is found that the antisymmetric magnetoelectric interaction may be responsible for the spin-reorientation transition without a change in the ordering of magnetic moments. Changing the sign of the exchange magnetic interaction along the b-axis leads to ferromagnetic ordering without observing a spin-reorientation transition. The dependence of isotropic and antisymmetric magnetic interactions on the microscopic parameters of the ferroelectric system is qualitatively explained. A mechanism for the occurrence of the spin-reorientation transition is presented based on the proposed microscopic model. The obtained results qualitatively coincide with Density Functional Theory calculations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
14
Issue :
5
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
175991923
Full Text :
https://doi.org/10.3390/nano14050408