Back to Search Start Over

Spatio-Temporal Deep Learning-Based Forecasting of Surface Solar Irradiance: Leveraging Satellite Data and Feature Selection.

Authors :
Kim, Jinyong
Kim, Eunkyeong
Jung, Seunghwan
Kim, Minseok
Kim, Baekcheon
Kim, Sungshin
Source :
Remote Sensing. Mar2024, Vol. 16 Issue 5, p888. 30p.
Publication Year :
2024

Abstract

This paper proposes a method for forecasting surface solar irradiance (SSI), the most critical factor in solar photovoltaic (PV) power generation. The proposed method uses 16-channel data obtained by the GEO-KOMPSAT-2A (GK2A) satellite of South Korea as the main data for SSI forecasting. To determine feature variables related to SSI from the 16-channel data, the differences and ratios between the channels were utilized. Additionally, to consider the fundamental characteristics of SSI originating from the sun, solar geometry parameters, such as solar declination (SD), solar elevation angle (SEA), and extraterrestrial solar radiation (ESR), were used. Deep learning-based feature selection (Deep-FS) was employed to select appropriate feature variables that affect SSI from various feature variables extracted from the 16-channel data. Lastly, spatio-temporal deep learning models, such as convolutional neural network–long short-term memory (CNN-LSTM) and CNN–gated recurrent unit (CNN-GRU), which can simultaneously reflect temporal and spatial characteristics, were used to forecast SSI. Experiments conducted to verify the proposed method against conventional methods confirmed that the proposed method delivers superior SSI forecasting performance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
5
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
175986739
Full Text :
https://doi.org/10.3390/rs16050888