Back to Search Start Over

Machine-learning intervention progress in the field of organic waste composting: Simulation, prediction, optimization, and challenges.

Authors :
Huang, Li-ting
Hou, Jia-yi
Liu, Hong-tao
Source :
Waste Management. Apr2024, Vol. 178, p155-167. 13p.
Publication Year :
2024

Abstract

[Display omitted] • Machine learning is usually used for compost maturity and environmental pollutants. • Artificial neural network is the most widely used in simulating composting process. • Ensemble models prioritize composting variables effectively. • Genetic algorithm is used to optimize compost product quality. • Further research on interpretable algorithms and algorithms combination is needed. Aerobic composting stands as a widely-adopted method for treating organic solid waste (OSW), simultaneously producing organic fertilizers and soil amendments. This biologically-driven biochemical reaction process, however, presents challenges due to its complex non-linear metabolism and the heterogeneous nature of the solid medium. These characteristics inherently limit the simulation accuracy and efficiency optimization in aerobic composting. Recently, significant efforts have been made to simulate and control composting process parameters, as well as predicting and optimizing composting product quality. Notably, the integration of machine learning (ML) in aerobic composting of organic waste has garnered considerable attention for its applicability and predictive capability in exploring the complex non-linear relationships of organic waste composting parameters. Despite numerous studies on ML applications in OSW composting, a systematic review of research findings in this field is lacking. This study offers a systematic overview of the application level, current status, and versatility of ML in OSW composting. It spans various aspects, such as compost maturity, environmental pollutants, nutrients, moisture, heat loss, and microbial metabolism. The survey reveals that ML-intervention predominantly focuses on compost maturity and environmental pollutants, followed by nutrients, moisture, heat loss, and microbial activity. The most commonly employed predictive models and optimization algorithms are artificial neural networks (47%) and genetic algorithms (10%). These demonstrate high prediction accuracy and maximize composting efficiency in the simulation and prediction of organic waste composting, alongside regulation of key parameters. Deep neural networks and ensemble learning models prove effective in achieving superior predictive performance by selecting feature variables in compost maturity and pollutant residue prediction of organic waste composting in a simpler and more objective manner. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0956053X
Volume :
178
Database :
Academic Search Index
Journal :
Waste Management
Publication Type :
Academic Journal
Accession number :
175983092
Full Text :
https://doi.org/10.1016/j.wasman.2024.02.022