Back to Search Start Over

Numerical integration of Fourier integrals by the optimal quadrature formula exact for hyperbolic functions.

Authors :
Hayotov, Abdullo
Kurbonnazarov, Abdimumin
Polvonov, Sarvarbek
Source :
AIP Conference Proceedings. 2024, Vol. 3004 Issue 1, p1-9. 9p.
Publication Year :
2024

Abstract

This paper studies the problem of construction of the optimal quadrature formula for numerical calculation of Fourier integrals. Applying the discrete analogue of the differential operator d 4 d x 4 − 2 d 2 d x 2 + 1 and using its properties we obtain the optimal quadrature formula wich is exact for hyperbolic functions sinh(x) and cosh(x), we get explicit expressions for the coefficients of the optimal quadrature formula. The obtained optimal quadrature formulas can be used in problems where Fourier transformations are used. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
3004
Issue :
1
Database :
Academic Search Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
175958306
Full Text :
https://doi.org/10.1063/5.0199915