Back to Search Start Over

Probing time-resolved plasma-driven solution electrochemistry in a falling liquid film plasma reactor: Identification of HO2− as a plasma-derived reducing agent.

Authors :
Srivastava, Tanubhav
Chaudhuri, Subhajyoti
Rich, Christopher C.
Schatz, George C.
Frontiera, Renee R.
Bruggeman, Peter
Source :
Journal of Chemical Physics. 3/7/2024, Vol. 160 Issue 9, p1-11. 11p.
Publication Year :
2024

Abstract

Many applications involving plasma–liquid interactions depend on the reactive processes occurring at the plasma–liquid interface. We report on a falling liquid film plasma reactor allowing for in situ optical absorption measurements of the time-dependence of the ferricyanide/ferrocyanide redox reactivity, complemented with ex situ measurement of the decomposition of formate. We found excellent agreement between the measured decomposition percentages and the diffusion-limited decomposition of formate by interfacial plasma-enabled reactions, except at high pH in thin liquid films, indicating the involvement of previously unexplored plasma-induced liquid phase chemistry enabled by long-lived reactive species. We also determined that high pH facilitates a reduction-favoring environment in ferricyanide/ferrocyanide redox solutions. In situ conversion measurements of a 1:1 ferricyanide/ferrocyanide redox mixture exceed the measured ex situ conversion and show that conversion of a 1:1 ferricyanide/ferrocyanide mixture is strongly dependent on film thickness. We identified three dominant processes: reduction faster than ms time scales for film thicknesses >100 µm, •OH-driven oxidation on time scales of <10 ms, and reduction on 15 ms time scales for film thickness <100 µm. We attribute the slow reduction and larger formate decomposition at high pH to HO 2 − formed from plasma-produced H2O2 enabled by the high pH at the plasma–liquid interface as confirmed experimentally and by computed reaction rates of HO 2 − with ferricyanide. Overall, this work demonstrates the utility of liquid film reactors in enabling the discovery of new plasma-interfacial chemistry and the utility of atmospheric plasmas for electrodeless electrochemistry. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
160
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
175915115
Full Text :
https://doi.org/10.1063/5.0190348