Back to Search Start Over

High-resolution source imaging and moment tensor estimation of acoustic emissions during brittle creep of basalt undergoing carbonation.

Authors :
Bai, Tong
Xing, Tiange
Peč, Matěj
Nakata, Nori
Source :
Geophysical Journal International. Apr2024, Vol. 237 Issue 1, p557-569. 13p.
Publication Year :
2024

Abstract

As the high-frequency analogue to field-scale earthquakes, acoustic emissions (AEs) provide a valuable complement to study rock deformation mechanisms. During the load-stepping creep experiments with CO2-saturated water injection into a basaltic sample from Carbfix site in Iceland, 8791 AE events are detected by at least one of the seven piezoelectric sensors. Here, we apply a cross-correlation-based source imaging method, called geometric-mean reverse-time migration (GmRTM) to locate those AE events. Besides the attractive picking-free feature shared with other waveform-based methods (e.g. time-reversal imaging), GmRTM is advantageous in generating high-resolution source images with reduced imaging artefacts, especially for experiments with relatively sparse receivers. In general, the imaged AE locations are found to be scattered across the sample, suggesting a complicated fracture network rather than a well-defined major shear fracture plane, in agreement with X-ray computed tomography imaging results after retrieval of samples from the deformation apparatus. Clustering the events in space and time using the nearest-neighbour approach revealed a group of 'repeaters', which are spatially co-located over an elongated period of time and likely indicate crack, or shear band growth. Furthermore, we select 2196 AE events with high signal-to-noise-ratio (SNR) and conduct moment tensor estimation using the adjoint (backpropagated) strain tensor fields at the locations of AE sources. The resulting AE locations and focal mechanisms support our previously assertion that creep of basalt at the experimental conditions is accommodated dominantly by distributed microcracking. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0956540X
Volume :
237
Issue :
1
Database :
Academic Search Index
Journal :
Geophysical Journal International
Publication Type :
Academic Journal
Accession number :
175913101
Full Text :
https://doi.org/10.1093/gji/ggae058