Back to Search Start Over

Detection of Granzyme B-associated Binding Targets in Peripheral Blood Samples of Hosts in Sickness and in Health Using a Granzyme B-like Peptide Fluorescent Conjugate (GP1R).

Authors :
Lo, Wai Chun Jennifer
Luther, Donald Gene
Source :
Journal of Fluorescence. Mar2024, Vol. 34 Issue 2, p691-711. 21p.
Publication Year :
2024

Abstract

Granzyme B, mostly expressed by cytotoxic T lymphocytes in the fight against cancer and infection, is known to induce cell death based on its active enzymatic activity as a serine protease. Recent studies showed cytotoxicity of a non-enzymatic granzyme B-like peptide (also referred to as granzyme B-associated peptide or GP1 in this report) in tumor cells and presence of binding targets for GP1R (i.e., GP1 conjugated with rhodamine fluorochrome) in tumor cells, bacteria, and circulating platelets/neutrophils of healthy hosts. But there were no data on "sick" hosts to help substantiate any potential GP1 based medical applications. Thus, we adopted similar GP1R binding protocols to further study binding of GP1 in different biological samples (including different blood samples of hosts in sickness and in health, cancer cell lines, and trigeminal ganglia culture of infected hosts treated with and without GP1) and determine if any binding patterns might have any associations with different health conditions. The overall preliminary results appear to show certain GP1R + binding patterns in certain blood components (especially neutrophils) have potential correlations with certain health conditions of hosts at sampling times, indicating potential GP1R applications for diagnostic purposes. Findings of different GP1R binding patterns in different cancer cell lines, whole blood samples and trigeminal ganglia culture of experimental mice infected with HSV-1 virus (might cause neuropathy) within a week post-infection, and blood samples of GP1-treated mouse survivors on day 21 post-infection provided preliminary evidence of potential GP1-led tumor cell-specific cell death and treatment efficacy for greater survival. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10530509
Volume :
34
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Fluorescence
Publication Type :
Academic Journal
Accession number :
175846528
Full Text :
https://doi.org/10.1007/s10895-023-03320-1