Back to Search Start Over

Tracking an untracked space debris after an inelastic collision using physics informed neural network.

Authors :
M, Harsha
Singh, Gurpreet
Kumar, Vinod
Buduru, Arun Balaji
Biswas, Sanat K.
Source :
Scientific Reports. 2/9/2024, Vol. 14 Issue 1, p1-18. 18p.
Publication Year :
2024

Abstract

With the sustained rise in satellite deployment in Low Earth Orbits, the collision risk from untracked space debris is also increasing. Often small-sized space debris (below 10 cm) are hard to track using the existing state-of-the-art methods. However, knowing such space debris' trajectory is crucial to avoid future collisions. We present a Physics Informed Neural Network (PINN)—based approach for estimation of the trajectory of space debris after a collision event between active satellite and space debris. In this work, we have simulated 8565 inelastic collision events between active satellites and space debris. To obtain the states of the active satellite, we use the TLE data of 1647 Starlink and 66 LEMUR satellites obtained from space-track.org. The velocity of space debris is initialized using our proposed velocity sampling method, and the coefficient of restitution is sampled from our proposed Gaussian mixture-based probability density function. Using the velocities of the colliding objects before the collision, we calculate the post-collision velocities and record the observations. The state (position and velocity), coefficient of restitution, and mass estimation of un-tracked space debris after an inelastic collision event along with the tracked active satellite can be posed as an optimization problem by observing the deviation of the active satellite from the trajectory. We have applied the classical optimization method, the Lagrange multiplier approach, for solving the above optimization problem and observed that its state estimation is not satisfactory as the system is under-determined. Subsequently, we have designed Deep Neural network-based methods and Physics Informed Neural Network (PINN) based methods for solving the above optimization problem. We have compared the performance of the models using root mean square error (RMSE) and interquartile range of the predictions. It has been observed that the PINN-based methods provide a better estimation performance for position, velocity, mass and coefficient of restitution of the space debris compared to other methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
175831820
Full Text :
https://doi.org/10.1038/s41598-024-51897-9