Back to Search
Start Over
Orthogonal mode couplers for plasmonic chip based on metal–insulator–metal waveguide for temperature sensing application.
- Source :
-
Scientific Reports . 2/12/2024, Vol. 14 Issue 1, p1-12. 12p. - Publication Year :
- 2024
-
Abstract
- In this work, a plasmonic sensor based on metal–insulator–metal (MIM) waveguide for temperature sensing application is numerically investigated via finite element method (FEM). The resonant cavity filled with PDMS polymer is side-coupled to the MIM bus waveguide. The sensitivity of the proposed device is ~ − 0.44 nm/°C which can be further enhanced to − 0.63 nm/°C by embedding a period array of metallic nanoblocks in the center of the cavity. We comprehend the existence of numerous highly attractive and sensitive plasmonic sensor designs, yet a notable gap exists in the exploration of light coupling mechanisms to these nanoscale waveguides. Consequently, we introduced an attractive approach: orthogonal mode couplers designed for plasmonic chips, which leverage MIM waveguide-based sensors. The optimized transmission of the hybrid system including silicon couplers and MIM waveguide is in the range of − 1.73 dB to − 2.93 dB for a broad wavelength range of 1450–1650 nm. The skillful integration of these couplers not only distinguishes our plasmonic sensor but also positions it as a highly promising solution for an extensive array of sensing applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- 175816672
- Full Text :
- https://doi.org/10.1038/s41598-024-54244-0