Back to Search Start Over

Impact of motile microorganisms on a Sutterby nanofluid flow over a rotating disk with Hall current and ion slip.

Authors :
Ramzan, Muhammad
Shah, Asad Ali
Shahmir, Nazia
Alshahrani, Saad
Kadry, Seifedine
Source :
Numerical Heat Transfer: Part A -- Applications. Feb2024, p1-19. 19p. 12 Illustrations, 4 Charts.
Publication Year :
2024

Abstract

AbstractThe dynamics of partly ionized fluid flow, when subjected to a magnetic field, differ considerably from that of typical fluid flow. The main applications of the partially ionized fluids including thermal arc plasma cutting, gas discharge lamps, lighting, and plasma medicine have made them vital when discussed under the effects of the applied magnetic field. This study discusses the flow of the Sutterby nanofluid over a stretching disk with Hall and ion slip effects amalgamated with Cattaneo–Christov double diffusion. The uniqueness of the envisaged model is enriched by considering the gyrotactic microorganisms. The system of governing equations is normalized and addressed numerically by applying the bvp4c package of MATLAB software. The outcomes are depicted <italic>via</italic> graphs and in tabularized form. It is perceived that fluid velocity is affected by the Hall current parameter. For the bioconvection Lewis number, a decline in the microorganism distribution is also observed. In addition, it is also perceived that the fluid concentration is enhanced against mass diffusion relaxation stress. The validity of the envisioned model by comparing it with a published study is also a part of this exploration. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10407782
Database :
Academic Search Index
Journal :
Numerical Heat Transfer: Part A -- Applications
Publication Type :
Academic Journal
Accession number :
175716647
Full Text :
https://doi.org/10.1080/10407782.2024.2320273