Back to Search Start Over

Pose-Dependent Cutting Force Identification for Robotic Milling.

Authors :
Maxiao Hou
Hongrui Cao
Yang Luo
Yanjie Guo
Source :
Journal of Manufacturing Science & Engineering. Aug2023, Vol. 145 Issue 8, p1-13. 13p.
Publication Year :
2023

Abstract

Cutting force identification is critical to improving industrial robot performance and reducing machining vibration. However, most indirect identification methods of cutting force are not applicable since the modal parameters of the robotic milling system vary with the robot pose. This paper presents a novel pose-dependent method to identify the cutting force using the acceleration signal generated by robotic milling. First, the modal parameters at different machining points are employed as a training dataset to develop the Gaussian Process Regression (GPR) model. Next, the modal parameters predicted by the GPR model are employed to optimize the cutting force estimation based on the minimum variance unbiased estimate method. Then, the Kalman filter method is employed to update the covariance matrix of the cutting force identification error and the state estimation error. Lastly, the effectiveness of the proposed method is verified with robotic milling experiments, and the results show that the identification error and time are acceptable under the condition of variable robot pose. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10871357
Volume :
145
Issue :
8
Database :
Academic Search Index
Journal :
Journal of Manufacturing Science & Engineering
Publication Type :
Academic Journal
Accession number :
175691573
Full Text :
https://doi.org/10.1115/1.4062145