Back to Search Start Over

Tunable visible emission and persistent luminescence of BaGa2O4:Cu2+.

Authors :
Wang, Lei
Zhao, Ning
Zhu, Changrui
Chen, Lei
Jiang, Yang
Zhou, Rulong
Liu, Yanfang
Qu, Bingyan
Hintzen, Hubertus T.
Source :
Chemical Engineering Journal. Mar2024, Vol. 483, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Visible emission band from 500 to 750 nm was observed from Cu2+ in BaGa 2 O 4. • BaGa 2 O 4 :Cu showed highly temperature- & excitation-dependent emission peak position. • BaGa 2 O 4 :Cu exhibited rare reported yellow persistent luminescence more than 12 h. In the field of solid-state luminescence, Cu2+ has long been widely acknowledged for its capacity to emit infrared light. However, the occurrence of visible emission from Cu2+ ions had been infrequently observed and reported. In this study, we made an intriguing discovery by examining the behavior of Cu2+ within an irregular coordination environment of Ba in BaGa 2 O 4. When excited by UV light, Cu2+ unexpectedly gave a vibrant yellow–red emission, covering a wavelength range spanning from 500 to 750 nm. More noteworthy, by simply manipulating the excitation wavelength or adjusting the temperature, the peak wavelength of the emission could be effectively tuned from approximately 600 to 660 nm, which could be attributed to the luminescence nature of the charge transfer (CT) between O2− and Cu2+. Moreover, the phosphor material displayed a remarkable persistent luminescence (PerL) lasting up to 12 h after UV light excitation. Through thermoluminescence (TL) measurements and first-principle calculations, we found that the intrinsic defects, such as vacancies of oxygen and gallium (V O and V Ga ″), played important roles for the PerL phenomena. These findings highlighted the exceptional tunability and PerL properties of BaGa 2 O 4 :Cu2+. Our study provided a new potential guideline for the design of Cu2+-activated phosphors in visible region, and opened up new avenues for the research in related functional luminescence materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
483
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
175679844
Full Text :
https://doi.org/10.1016/j.cej.2024.149361