Back to Search
Start Over
Amphiphilic Graft Copolymers as Templates for the Generation of Binary Metal Oxide Mesoporous Interfacial Layers for Solid-State Photovoltaic Cells.
- Source :
-
Nanomaterials (2079-4991) . Feb2024, Vol. 14 Issue 4, p352. 12p. - Publication Year :
- 2024
-
Abstract
- The binary metal oxide mesoporous interfacial layers (bi-MO meso IF layer) templated by a graft copolymer are synthesized between a fluorine-doped tin oxide (FTO) substrate and nanocrystalline TiO2 (nc-TiO2). Amphiphilic graft copolymers, Poly(epichlorohydrin)-graft-poly(styrene), PECH-g-PS, were used as a structure-directing agent, and the fabricated bi-MO meso IF layer exhibits good interconnectivity and high porosity. Even if the amount of ZnO in bi-MO meso IF layer increased, it was confirmed that the morphology and porosity of the bi-MO meso IF layer were well-maintained. In addtion, the bi-MO meso IF layer coated onto FTO substrates shows higher transmittance compared with a pristine FTO substrate and dense-TiO2/FTO, due to the reduced surface roughness of FTO. The overall conversion efficiency (η) of solid-state photovoltaic cells, dye-sensitized solar cells (DSSCs) fabricated with nc-TiO2 layer/bi-MO meso IF layer TZ1 used as a photoanode, reaches 5.0% at 100 mW cm−2, which is higher than that of DSSCs with an nc-TiO2 layer/dense-TiO2 layer (4.2%), resulting from enhanced light harvesting, good interconnectivity, and reduced interfacial resistance. The cell efficiency of the device did not change after 15 days, indicating that the bi-MO meso IF layer with solid-state electrolyte has improved electrode/electrolyte interface and electrochemical stability. Additionally, commercial scattering layer/nc-TiO2 layer/bi-MO meso IF layer TZ1 photoanode-fabricated solid-state photovoltaic cells (DSSCs) achieved an overall conversion efficiency (η) of 6.4% at 100 mW cm−2. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20794991
- Volume :
- 14
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Nanomaterials (2079-4991)
- Publication Type :
- Academic Journal
- Accession number :
- 175654367
- Full Text :
- https://doi.org/10.3390/nano14040352