Back to Search Start Over

Novel Apoplastic Antifreeze Proteins of Deschampsia antarctica as Enhancer of Common Cell Freezing Media for Cryobanking of Genetic Resources, a Preliminary Study.

Authors :
Short, Stefania E.
Zamorano, Mauricio
Aranzaez-Ríos, Cristian
Lee-Estevez, Manuel
Díaz, Rommy
Quiñones, John
Ulloa-Rodríguez, Patricio
Villalobos, Elías Figueroa
Bravo, León A.
Graether, Steffen P.
Farías, Jorge G.
Source :
Biomolecules (2218-273X). Feb2024, Vol. 14 Issue 2, p174. 15p.
Publication Year :
2024

Abstract

Highlights: Cryopreservation generates ice recrystallization. D. antarctica apoplastic proteins show antifreeze activity. PMI of S. salar sperm can be maintained with AFPs. High MMP of sperm increases with AFPs. D. antarctica apoplastic proteins act as nonpermeable cryoprotectants. Antifreeze proteins (AFPs) are natural biomolecules found in cold-adapted organisms that lower the freezing point of water, allowing survival in icy conditions. These proteins have the potential to improve cryopreservation techniques by enhancing the quality of genetic material postthaw. Deschampsia antarctica, a freezing-tolerant plant, possesses AFPs and is a promising candidate for cryopreservation applications. In this study, we investigated the cryoprotective properties of AFPs from D. antarctica extracts on Atlantic salmon spermatozoa. Apoplastic extracts were used to determine ice recrystallization inhibition (IRI), thermal hysteresis (TH) activities and ice crystal morphology. Spermatozoa were cryopreserved using a standard cryoprotectant medium (C+) and three alternative media supplemented with apoplastic extracts. Flow cytometry was employed to measure plasma membrane integrity (PMI) and mitochondrial membrane potential (MMP) postthaw. Results showed that a low concentration of AFPs (0.05 mg/mL) provided significant IRI activity. Apoplastic extracts from D. antarctica demonstrated a cryoprotective effect on salmon spermatozoa, with PMI comparable to the standard medium. Moreover, samples treated with apoplastic extracts exhibited a higher percentage of cells with high MMP. These findings represent the first and preliminary report that suggests that AFPs derived from apoplastic extracts of D. antarctica have the potential to serve as cryoprotectants and could allow the development of novel freezing media. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2218273X
Volume :
14
Issue :
2
Database :
Academic Search Index
Journal :
Biomolecules (2218-273X)
Publication Type :
Academic Journal
Accession number :
175653311
Full Text :
https://doi.org/10.3390/biom14020174