Back to Search Start Over

Sulfadiazine Exerts Potential Anticancer Effect in HepG2 and MCF7 Cells by Inhibiting TNFα, IL1b, COX-1, COX-2, 5-LOX Gene Expression: Evidence from In Vitro and Computational Studies.

Authors :
Gomaa, Mohamed
Gad, Wael
Hussein, Dania
Pottoo, Faheem Hyder
Tawfeeq, Nada
Alturki, Mansour
Alfahad, Dhay
Alanazi, Razan
Salama, Ismail
Aziz, Mostafa
Zahra, Aboelnasr
Hanafy, Abeer
Source :
Pharmaceuticals (14248247). Feb2024, Vol. 17 Issue 2, p189. 22p.
Publication Year :
2024

Abstract

Drug repurposing is a promising approach that has the potential to revolutionize the drug discovery and development process. By leveraging existing drugs, we can bring new treatments to patients more quickly and affordably. Anti-inflammatory drugs have been shown to target multiple pathways involved in cancer development and progression. This suggests that they may be more effective in treating cancer than drugs that target a single pathway. Cell viability was measured using the MTT assay. The expression of genes related to inflammation (TNFa, IL1b, COX-1, COX-2, and 5-LOX) was measured in HepG2, MCF7, and THLE-2 cells using qPCR. The levels of TNFα, IL1b, COX-1, COX-2, and 5-LOX were also measured in these cells using an ELISA kit. An enzyme binding assay revealed that sulfadiazine expressed weaker inhibitory activity against COX-2 (IC50 = 5.27 μM) in comparison with the COX-2 selective reference inhibitor celecoxib (COX-2 IC50 = 1.94 μM). However, a more balanced inhibitory effect was revealed for sulfadiazine against the COX/LOX pathway with greater affinity towards 5-LOX (IC50 = 19.1 μM) versus COX-1 (IC50 = 18.4 μM) as compared to celecoxib (5-LOX IC50 = 16.7 μM, and COX-1 IC50 = 5.9 μM). MTT assays revealed the IC50 values of 245.69 ± 4.1 µM and 215.68 ± 3.8 µM on HepG2 and MCF7 cell lines, respectively, compared to the standard drug cisplatin (66.92 ± 1.8 µM and 46.83 ± 1.3 µM, respectively). The anti-inflammatory effect of sulfadiazine was also depicted through its effect on the levels of inflammatory markers and inflammation-related genes (TNFα, IL1b, COX-1, COX-2, 5-LOX). Molecular simulation studies revealed key binding interactions that explain the difference in the activity profiles of sulfadiazine compared to celecoxib. The results suggest that sulfadiazine exhibited balanced inhibitory activity against the 5-LOX/COX-1 enzymes compared to the selective COX-2 inhibitor, celecoxib. These findings highlight the potential of sulfadiazine as a potential anticancer agent through balanced inhibitory activity against the COX/LOX pathway and reduction in the expression of inflammatory genes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248247
Volume :
17
Issue :
2
Database :
Academic Search Index
Journal :
Pharmaceuticals (14248247)
Publication Type :
Academic Journal
Accession number :
175651337
Full Text :
https://doi.org/10.3390/ph17020189