Back to Search Start Over

Making a new limb out of old cells: exploring endogenous cell reprogramming and its role during limb regeneration.

Authors :
Raymond, Michael J.
McCusker, Catherine D.
Source :
American Journal of Physiology: Cell Physiology. Feb2024, Vol. 326 Issue 2, pC505-C512. 8p.
Publication Year :
2024

Abstract

Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03636143
Volume :
326
Issue :
2
Database :
Academic Search Index
Journal :
American Journal of Physiology: Cell Physiology
Publication Type :
Academic Journal
Accession number :
175629578
Full Text :
https://doi.org/10.1152/ajpcell.00233.2023