Back to Search Start Over

Self‐Reliant Nanomedicine with Long‐Lasting Glutathione Depletion Ability Disrupts Adaptive Redox Homeostasis and Suppresses Cancer Stem Cells.

Authors :
Xiong, Yuxuan
Yong, Zhengtao
Li, Shiyou
Wang, Qiang
Chen, Xiang
Zhang, Zhijie
Zhao, Qingfu
Deng, Qingyuan
Yang, Xiangliang
Li, Zifu
Source :
Advanced Functional Materials. Feb2024, Vol. 34 Issue 8, p1-12. 12p.
Publication Year :
2024

Abstract

Bulk cancer cells and cancer stem cells (CSCs) harbor efficient and adaptive redox systems to help them resist oxidative insults arising from diverse therapeutic modalities. Herein, a tumor microenvironment (TME)‐activatable nano‐modulator capable of disrupting adaptive redox homeostasis, prepared by integrating FDA‐approved xCT inhibitor sulfasalazine (SSZ) into pH‐responsive hydroxyethyl starch‐doxorubicin conjugate stabilized copper peroxide nanoparticles (HSCPs) is reported. Compared to poly(vinylpyrrolidone) (PVP)‐stabilized copper peroxide nanoparticles, HSCPs exhibit superior physiological stability, longer circulation half‐life, and higher tumor enrichment. Under an acidic TME, the active components inside HSCPs are productively released along with the disintegration of HSCPs. The specifically generated hydrogen peroxide (H2O2) from copper peroxide nanoparticles furnishes a constant power source for copper‐mediated hydroxyl radical (•OH) production, serving as a wealthy supplier for oxidative stress. Meanwhile, the tumor‐specific release of Cu2+ and SSZ can induce long‐lasting glutathione (GSH) depletion via copper‐mediated self‐cycling valence transitions and SSZ‐blocked GSH biosynthesis, thereby reducing the offsetting action of the antioxidant GSH against oxidative stress. As a result, this sustained oxidative stress potently restrains the growth of aggressive orthotopic breast tumors while suppressing pulmonary metastasis by eradicating CSC populations. The reported smart nanomedicine provides a new paradigm for redox imbalance‐triggered cancer therapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
34
Issue :
8
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
175520754
Full Text :
https://doi.org/10.1002/adfm.202310158