Back to Search
Start Over
Fission decay modes of 254Fm* compound nucleus formed in 16O+238U reaction.
- Source :
-
EPJ Web of Conferences . 12/8/2023, Vol. 290, p1-4. 4p. - Publication Year :
- 2023
-
Abstract
- The quantum mechanical fragmentation theory (QMFT) based dynamical cluster-decay model (DCM) is applied to analyze the probable fission decay modes of 254Fm* compound nucleus produced in 16O+238U nuclear reaction at excitation energy EC*N =45.9 MeV. The fission valley of collective fragmentation potential and the multi-humped peaks of preformation probability P0 profile are analyzed by considering compact as well as elongated configurations of quadrupole (β2) deformed fragments. The competitive emergence of different symmetric [symmetric superlong (SL), symmetric supershort (SS)] and asymmetric [standard 1 (S1), standard 2 (S2), standard 3 (S3)] fission modes have been observed for the case of elongated configuration. The division of mass and charge in nuclear fission of 254Fm* depicts the importance of spherical and deformed magic shell closures. The most energetic light (AL and heavy (AH) decay fragments of aforementioned fission modes are identified. Moreover, the DCM-calculated fission cross-sections (σfission) show reasonable agreement with the experimental measurements [24]. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21016275
- Volume :
- 290
- Database :
- Academic Search Index
- Journal :
- EPJ Web of Conferences
- Publication Type :
- Conference
- Accession number :
- 175496183
- Full Text :
- https://doi.org/10.1051/epjconf/202329002011