Back to Search Start Over

Proprioceptive event related potentials: gating and task effects

Authors :
Arnfred, Sidse M.
Source :
Clinical Neurophysiology. Apr2005, Vol. 116 Issue 4, p849-860. 12p.
Publication Year :
2005

Abstract

Abstract: Objective: The integration of proprioception with vision, touch or audition is considered basic to the developmental formation of perceptions, conceptual objects and the creation of cognitive schemes. Thus, mapping of proprioceptive information processing is important in cognitive research. A stimulus of a brisk change of weight on a hand held load elicit a proprioceptive evoked potential (PEP). Here this is used to examine early and late information processing related to weight discrimination by event related potentials (ERP). Methods: A gating paradigm having 1s between the proprioceptive stimuli of 100g weight increase was recorded in 12 runs of 40 pairs and an 1:4 oddball task of discriminating between 40 and 100g weight increase was both recorded in 24 healthy men. The subjects were stratified in 3 groups according to their discrimination errors. Results: The proprioceptive event related potential (PERP) consisted of a contralateral parietal P60, frontal N70, midline P100, initial contralateral later widespread N160, vertex P200, parietal N290 and target related widespread P360 and posterior N500. The target related components were augmented in the best performers, while the bad performers had delayed P60 and attenuated N70. The amplitudes of N160, P200 and N290 were unrelated to performance. Gating was seen as attenuation of P100, N160 and P200 amplitude. Conclusions: The proprioceptive stimulus feature processing seem to be accomplished in the first 100ms, while later components are modified by context as expected from previous findings in the somatosensory modality. Significance: The PERP could be a useful research tool in the investigation of bodily information processing in neuropsychiatric disorders. [Copyright &y& Elsevier]

Details

Language :
English
ISSN :
13882457
Volume :
116
Issue :
4
Database :
Academic Search Index
Journal :
Clinical Neurophysiology
Publication Type :
Academic Journal
Accession number :
17547822
Full Text :
https://doi.org/10.1016/j.clinph.2004.11.010