Back to Search Start Over

12-Lead ECG signal classification for detecting ECG arrhythmia via an information bottleneck-based multi-scale network.

Authors :
Zhang, Siyuan
Lian, Cheng
Xu, Bingrong
Su, Yixin
Alhudhaif, Adi
Source :
Information Sciences. Mar2024, Vol. 662, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

The 12-lead electrocardiogram (ECG) is a reliable diagnostic tool for detecting and treating severe cardiovascular conditions like arrhythmia and heart attack. Deep neural networks (DNNs) have achieved higher accuracy in recent years than traditional ECG signal classification task methods. Convolutional neural network (CNN) and Transformer are the two mainstream architectures of DNN, respectively good at extracting local and global features from input data. This paper proposes the multi-scale convolutional Transformer network (MCTnet), an efficient combination of Transformer encoder and CNN for ECG signal classification. MCTnet utilizes the advantages of CNN and self-attention mechanisms to capture potential features in ECG signal accurately. The dual-branch Transformer encoder extracts different-scale feature representations, enabling the capture of both local and global information. Additionally, an information bottleneck method eliminates redundant information and enhances task-relevant information in the learned representations. To evaluate the performance of MCTnet, comprehensive experiments are conducted on three commonly used ECG datasets. The results demonstrate that MCTnet outperforms current deep learning-based models, highlighting its effectiveness in ECG signal classification. It also shows that the performance of the model can be effectively improved by utilizing multi-scale representation learning and information bottleneck. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00200255
Volume :
662
Database :
Academic Search Index
Journal :
Information Sciences
Publication Type :
Periodical
Accession number :
175456716
Full Text :
https://doi.org/10.1016/j.ins.2024.120239