Back to Search Start Over

Unimodal singularities and boundary divisors in the KSBA moduli of a class of Horikawa surfaces.

Authors :
Gallardo, Patricio
Pearlstein, Gregory
Schaffler, Luca
Zhang, Zheng
Source :
Mathematische Nachrichten. Feb2024, Vol. 297 Issue 2, p595-628. 34p.
Publication Year :
2024

Abstract

Smooth minimal surfaces of general type with K2=1$K^2=1$, pg=2$p_g=2$, and q=0$q=0$ constitute a fundamental example in the geography of algebraic surfaces, and the 28‐dimensional moduli space M$\mathbf {M}$ of their canonical models admits a modular compactification M¯$\overline{\mathbf {M}}$ via the minimal model program. We describe eight new irreducible boundary divisors in such compactification parameterizing reducible stable surfaces. Additionally, we study the relation with the GIT compactification of M$\mathbf {M}$ and the Hodge theory of the degenerate surfaces that the eight divisors parameterize. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0025584X
Volume :
297
Issue :
2
Database :
Academic Search Index
Journal :
Mathematische Nachrichten
Publication Type :
Academic Journal
Accession number :
175364874
Full Text :
https://doi.org/10.1002/mana.202300019