Back to Search
Start Over
Unimodal singularities and boundary divisors in the KSBA moduli of a class of Horikawa surfaces.
- Source :
-
Mathematische Nachrichten . Feb2024, Vol. 297 Issue 2, p595-628. 34p. - Publication Year :
- 2024
-
Abstract
- Smooth minimal surfaces of general type with K2=1$K^2=1$, pg=2$p_g=2$, and q=0$q=0$ constitute a fundamental example in the geography of algebraic surfaces, and the 28‐dimensional moduli space M$\mathbf {M}$ of their canonical models admits a modular compactification M¯$\overline{\mathbf {M}}$ via the minimal model program. We describe eight new irreducible boundary divisors in such compactification parameterizing reducible stable surfaces. Additionally, we study the relation with the GIT compactification of M$\mathbf {M}$ and the Hodge theory of the degenerate surfaces that the eight divisors parameterize. [ABSTRACT FROM AUTHOR]
- Subjects :
- *HODGE theory
*MINIMAL surfaces
*ALGEBRAIC surfaces
Subjects
Details
- Language :
- English
- ISSN :
- 0025584X
- Volume :
- 297
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Mathematische Nachrichten
- Publication Type :
- Academic Journal
- Accession number :
- 175364874
- Full Text :
- https://doi.org/10.1002/mana.202300019