Back to Search Start Over

Estimates of fundamental solution for Kohn Laplacian in Besov and Triebel-Lizorkin spaces.

Authors :
Qin, Tongtong
Chang, Der-Chen
Han, Yongsheng
Wu, Xinfeng
Source :
Applicable Analysis. Feb2024, Vol. 103 Issue 4, p763-789. 27p.
Publication Year :
2024

Abstract

We introduce Besov space $ \dot {B}_{p}^{\alpha,q}(\partial \Omega _k) $ B ˙ p α , q (∂ Ω k) and Triebel-Lizorkin space $ \dot {F}^{\alpha,q}_{p}(\partial \Omega _k) $ F ˙ p α , q (∂ Ω k) on a family of model domains $ \partial \Omega _k=\left \{(\mathbf{z},z_{n+1})=(z_1,z_2,\ldots, z_{n+1}):\right. \left. \mbox {Im} (z_{n+1})=\phi (|\mathbf{z}|^2)\right \} $ ∂ Ω k = { (z , z n + 1) = (z 1 , z 2 , ... , z n + 1) : Im (z n + 1) = ϕ (| z | 2) } with $ \phi (x)=x^{k} $ ϕ (x) = x k in $ \mathbf {C}^{n+1} $ C n + 1 which can be considered as a space of homogeneous type in the sense of Coifman RR, Weiss G.[Analyse Harmonique Non-commutative and Certains Espaces Homogǹes. Berlin: Springer; 1971. (Lecture Notes in Math.; 242).], Coifman R, Weiss G. [Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc. 1977;83:569–645.]. We study the sharp estimates on the fundamental solution for the Kohn Laplacian and Cauchy-Szegö projection on $ \partial \Omega _k $ ∂ Ω k in these spaces. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036811
Volume :
103
Issue :
4
Database :
Academic Search Index
Journal :
Applicable Analysis
Publication Type :
Academic Journal
Accession number :
175301452
Full Text :
https://doi.org/10.1080/00036811.2023.2208752