Back to Search Start Over

Believing is seeing - the deceptive influence of bias in quantitative microscopy.

Authors :
Lee, Rachel M.
Eisenman, Leanna R.
Khuon, Satya
Aaron, Jesse S.
Teng-Leong Chew
Source :
Journal of Cell Science. Jan2024, Vol. 137 Issue 1, p1-10. 10p.
Publication Year :
2024

Abstract

The visual allure of microscopy makes it an intuitively powerful research tool. Intuition, however, can easily obscure or distort the reality of the information contained in an image. Common cognitive biases, combined with institutional pressures that reward positive research results, can quickly skew a microscopy project towards upholding, rather than rigorously challenging, a hypothesis. The impact of these biases on a variety of research topics is well known. What might be less appreciated are the many forms in which bias can permeate a microscopy experiment. Even well-intentioned researchers are susceptible to bias, which must therefore be actively recognized to be mitigated. Importantly, although image quantification has increasingly become an expectation, ostensibly to confront subtle biases, it is not a guarantee against bias and cannot alone shield an experiment from cognitive distortions. Here, we provide illustrative examples of the insidiously pervasive nature of bias in microscopy experiments - from initial experimental design to image acquisition, analysis and data interpretation. We then provide suggestions that can serve as guard rails against bias. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219533
Volume :
137
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Cell Science
Publication Type :
Academic Journal
Accession number :
175269419
Full Text :
https://doi.org/10.1242/jcs.261567