Back to Search Start Over

Two parallel methods for the three-dimensional CFD coupling simulation of shell and tube heat exchangers.

Authors :
Wang, Shiqi
He, Shaopeng
Wang, Mingjun
Tian, Wenxi
Su, G.H.
Qiu, Suizheng
Source :
Annals of Nuclear Energy. May2024, Vol. 199, pN.PAG-N.PAG. 1p.
Publication Year :
2024

Abstract

• Two coupled parallel frameworks for shell and tube heat exchangers are proposed. • Fully three-dimensional parallel computation on both sides of the heat exchanger is realized. • One-to-one method achieves 85% parallel efficiency in 14 cores computation. • One-to-many method improves computational efficiency by about 20 times over serial in 28 cores computation. Shell and tube heat exchanger is widely used as a common type of heat exchanger. When the size and the number of heat exchanger tubes are enormous, it is difficult to use the direct modeling method for numerical simulation of heat exchangers. The simplified modeling method based on porous media utilizing user-defined function (UDF) has been widely applied. However, when the three-dimensional (3D) modeling is required on the tube side, the parallelization problem still restricts the computational efficiency of numerical simulation. In this paper, a one-to-one parallel method was first developed to solve the problem of coupled parameter transfer between the primary and secondary sides in the parallel framework, which was tested to achieve a parallel efficiency of 85% under 14 cores. However, the method acquires complicated data transfer between nodes, large memory occupation, and the modeling of the tube side is different from the actual structure under certain circumstances. To solve the problems, a one-to-many parallel method is proposed, and the computational efficiency is tested to be enhanced by about 20 times under 28 cores compared with single core, with a parallel efficiency of 70%. The two methods proposed in this paper are of great significance to the parallel transformation of the future 3D full-size code for shell and tube heat exchangers development and the calculation efficiency improvement. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03064549
Volume :
199
Database :
Academic Search Index
Journal :
Annals of Nuclear Energy
Publication Type :
Academic Journal
Accession number :
175165226
Full Text :
https://doi.org/10.1016/j.anucene.2024.110374