Back to Search Start Over

DeepBiomarker2: Prediction of Alcohol and Substance Use Disorder Risk in Post-Traumatic Stress Disorder Patients Using Electronic Medical Records and Multiple Social Determinants of Health.

Authors :
Miranda, Oshin
Fan, Peihao
Qi, Xiguang
Wang, Haohan
Brannock, M. Daniel
Kosten, Thomas R.
Ryan, Neal David
Kirisci, Levent
Wang, Lirong
Source :
Journal of Personalized Medicine. Jan2024, Vol. 14 Issue 1, p94. 24p.
Publication Year :
2024

Abstract

Prediction of high-risk events amongst patients with mental disorders is critical for personalized interventions. We developed DeepBiomarker2 by leveraging deep learning and natural language processing to analyze lab tests, medication use, diagnosis, social determinants of health (SDoH) parameters, and psychotherapy for outcome prediction. To increase the model's interpretability, we further refined our contribution analysis to identify key features by scaling with a factor from a reference feature. We applied DeepBiomarker2 to analyze the EMR data of 38,807 patients from the University of Pittsburgh Medical Center diagnosed with post-traumatic stress disorder (PTSD) to determine their risk of developing alcohol and substance use disorder (ASUD). DeepBiomarker2 predicted whether a PTSD patient would have a diagnosis of ASUD within the following 3 months with an average c-statistic (receiver operating characteristic AUC) of 0.93 and average F1 score, precision, and recall of 0.880, 0.895, and 0.866 in the test sets, respectively. Our study found that the medications clindamycin, enalapril, penicillin, valacyclovir, Xarelto/rivaroxaban, moxifloxacin, and atropine and the SDoH parameters access to psychotherapy, living in zip codes with a high normalized vegetative index, Gini index, and low-income segregation may have potential to reduce the risk of ASUDs in PTSD. In conclusion, the integration of SDoH information, coupled with the refined feature contribution analysis, empowers DeepBiomarker2 to accurately predict ASUD risk. Moreover, the model can further identify potential indicators of increased risk along with medications with beneficial effects. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754426
Volume :
14
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Personalized Medicine
Publication Type :
Academic Journal
Accession number :
175080164
Full Text :
https://doi.org/10.3390/jpm14010094