Back to Search Start Over

Revealing the Active Sites in Atomically Dispersed Multi‐Metal–Nitrogen–Carbon Catalysts.

Authors :
Sun, Buwei
Zhang, Shiyu
Yang, Haozhou
Zhang, Tianyu
Dong, Qiujiang
Zhang, Wanxing
Ding, Jia
Liu, Xiaogang
Wang, Lei
Han, Xiaopeng
Hu, Wenbin
Source :
Advanced Functional Materials. Jan2024, p1. 8p. 5 Illustrations.
Publication Year :
2024

Abstract

Atomically dispersed metal‐nitrogen‐carbon catalysts have been extensively explored for various sustainable energy‐related reactions. From a material perspective, these catalysts are likely to consist of a combination of single‐atom, dual‐atom and possibly even multi‐atom sites. However, pinpointing their true active sites has remained a challenging task. In this study, a model catalyst is introduced, Co/CoMn‐NC, featuring both Co single‐atom sites and CoMn dual‐atom sites on a nitrogen‐doped carbon substrate. By employing a combination of X‐ray adsorption spectroscopy and density functional theory calculations, the atomic configuration of Co/CoMn‐NC has been determined. Density functional theory calculations are also used to unequivocally identify Co‐atom within the CoMn dual‐atom motif as the predominate active site of the Co/CoMn‐NC model catalyst toward oxygen reduction reaction (ORR), which is further confirmed by in situ Raman spectroscopy. The cooperative interactions between Co single‐atom sites and CoMn dual‐atom sites can finely tune the d‐band center and ameliorate the adsorption and desorption behaviors of the intermediates, thereby facilitating ORR kinetic. Overall, the study introduces a systematic strategy to elucidate the structure and the superiority of the model system and provides new insights into atomically dispersed multi‐metal active sites, showcasing that enhanced catalytic performance extends beyond unified diatomic sites or monatomic sites. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Database :
Academic Search Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
175066898
Full Text :
https://doi.org/10.1002/adfm.202315862