Back to Search Start Over

Synthesis, Experimental Characterization, DFT and Theoretical Anticorrosion Study for 1-(4-(3-Methyl-3-phenylcyclobutyl)thiazol-2-yl)-3-(p-tolyl)thiourea.

Authors :
Omer, Rebaz Anwar
Koparir, P.
Koparir, M.
Source :
Protection of Metals & Physical Chemistry of Surfaces. Dec2023, Vol. 59 Issue 6, p1315-1325. 11p.
Publication Year :
2023

Abstract

In this work, 1-(4-(3-methyl-3-phenylcyclobutyl)thiazol-2-yl)-3-(p-tolyl)thiourea was synthesized by alcohol-mediated condensation of 4-(3-methyl-3-phenylcyclobutyl)thiazol-2-amine and isothiocyanatobenzene. The molecule results were experimentally characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Density functional theory (B3LYP/6-311G) was used to investigate the ideal molecule structure, vibrational frequencies, and 1H with 13C NMR (theoretically) chemical shifts. Theoretical and experimental spectroscopy results were compared and agreed with each other, which indicated the validity of the used developed molecular structure. The Dipole moment, hardness, softness, electronegativity, electrophilicity index, nucleophilicity index, and chemical potential as electronic structural parameters linked to corrosion inhibition efficacy were investigated for the prepared compound. Furthermore, the fraction of transferred electrons was calculated to determine the interaction between the iron surface and organic molecules. The results indicated a favorable relationship between organic-based corrosion inhibitors and quantum chemical parameters processes. The corrosion inhibitors' behavior can be predicted without the need for experimental investigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20702051
Volume :
59
Issue :
6
Database :
Academic Search Index
Journal :
Protection of Metals & Physical Chemistry of Surfaces
Publication Type :
Academic Journal
Accession number :
175023718
Full Text :
https://doi.org/10.1134/S2070205123701198