Back to Search Start Over

Dissecting 3D Printing for Engineering Design Process Education of High School Preservice Teachers.

Authors :
Weihang Zhu
Manuel, Mariam
Evans, Paige
Weber, Peter
Source :
Proceedings of the ASEE Annual Conference & Exposition. 2023, p1-11. 11p.
Publication Year :
2023

Abstract

3D printing (3DP) has been becoming more and more popular throughout the education system from Kindergarten to University. High school is a critical period for students to decide their imminent university major selection which in turn will impact their future career choices. High school students are usually intrigued by hands-on tool such as 3DP which is also an important contributor to other courses such as robotics. The recent years have seen more investment and availability of 3DP in high schools, especially Career and Technical Education (CTE) programs. However, mere availability of 3DP is not enough for teachers to fully utilize its potential in their classrooms. While basic 3DP skills can be obtained through a few hours of training, the basic training is insufficient to ensure effective teaching Engineering Design Process (EDP) at the high school level. To address this problem, this project develops an EDP course tightly integrated with 3DP for preservice teachers (PST) who are going to enter the workforce in high schools. Engineering design process (EDP) has become an essential part for preservice teachers (PST), especially for high school STEM. 3DP brought transformative change to EDP which is an iterative process that needs virtual/physical prototyping. The new PST course on EDP will be purposefully integrated with an in-depth discussion of 3DP. The approach is to dissect a 3D printer's hardware, explain each component's function, introduce each component's manufacturing methods, describe possible defects, and elucidate what works and what does not. This has at least four benefits: 1) PSTs will know what is possibly wrong when a printer or printing process fails, 2) PSTs will learn more manufacturing processes besides 3DP that can be used to support engineering design prototyping, 3) PSTs will know how to design something that can meet the manufacturing constraints, i.e., can be actually fabricated, and 4) reduce errors and frustrations caused by failed design and failed prints which happen frequently to novices in 3DP. After graduation, PSTs will bring the knowledge to their future high schools and will be more confident in teaching engineering design, reverse engineering, prototype development, manufacturing, and technology. The developed course will be implemented and assessed in a future semester. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21535868
Database :
Academic Search Index
Journal :
Proceedings of the ASEE Annual Conference & Exposition
Publication Type :
Conference
Accession number :
174997805