Back to Search Start Over

Identifying the potential miRNA biomarkers based on multi-view networks and reinforcement learning for diseases.

Authors :
Su, Benzhe
Wang, Weiwei
Lin, Xiaohui
Liu, Shenglan
Huang, Xin
Source :
Briefings in Bioinformatics. Jan2024, Vol. 25 Issue 1, p1-13. 13p.
Publication Year :
2024

Abstract

MicroRNAs (miRNAs) play important roles in the occurrence and development of diseases. However, it is still challenging to identify the effective miRNA biomarkers for improving the disease diagnosis and prognosis. In this study, we proposed the miRNA data analysis method based on multi-view miRNA networks and reinforcement learning, miRMarker, to define the potential miRNA disease biomarkers. miRMarker constructs the cooperative regulation network and functional similarity network based on the expression data and known miRNA–disease relations, respectively. The cooperative regulation of miRNAs was evaluated by measuring the changes of relative expression. Natural language processing was introduced for calculating the miRNA functional similarity. Then, miRMarker integrates the multi-view miRNA networks and defines the informative miRNA modules through a reinforcement learning strategy. We compared miRMarker with eight efficient data analysis methods on nine transcriptomics datasets to show its superiority in disease sample discrimination. The comparison results suggested that miRMarker outperformed other data analysis methods in receiver operating characteristic analysis. Furthermore, the defined miRNA modules of miRMarker on colorectal cancer data not only show the excellent performance of cancer sample discrimination but also play significant roles in the cancer-related pathway disturbances. The experimental results indicate that miRMarker can build the robust miRNA interaction network by integrating the multi-view networks. Besides, exploring the miRNA interaction network using reinforcement learning favors defining the important miRNA modules. In summary, miRMarker can be a hopeful tool in biomarker identification for human diseases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14675463
Volume :
25
Issue :
1
Database :
Academic Search Index
Journal :
Briefings in Bioinformatics
Publication Type :
Academic Journal
Accession number :
174953965
Full Text :
https://doi.org/10.1093/bib/bbad427